PARTÍCULAS IDÊNTICAS NO SDCTIE GRACELI.




TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll * D
          
X
 [ESTADO QUÂNTICO]



As partículas idênticas são partículas que não podem ser distinguidas entre si, inclusive em princípio. Tanto as partículas elementares como partículas compostas (como prótons ou átomos) são idênticas a outras partículas de sua mesma espécie.

Em física clássica, é possível distinguir partículas individuais em um sistema, inclusive se têm as mesmas propriedades mecânicas. Tanto se pode "etiquetar" ou "pintar" cada partícula para distinguí-la das demais, ou tanto se pode seguir com detalhe suas trajetórias. Entretanto, isto não é possível para partículas idênticas em mecânica quântica. As partículas quânticas estão especificadas exatamente por seus estados mecânico-quânticos, de forma que não é possível assinalar-se propriedades físicas ou "etiquetas" adicionais, além de um nível formal. Seguir a trajetória de cada partícula também é impossível, já que sua posição e seu momento não estão definidas com exatidão simultaneamente em nenhum momento (conforme o princípio da incerteza de Heisenberg).

Isso tem consequências importantes em mecânica estatística. Os cálculos em mecânica estatística baseiam-se em argumentos probabilísticos, que são sensíveis se os objetos estudados são idênticos ou não. Assim sendo, as partículas idênticas exibem um comportamento estatístico "massivo" marcadamente distinto daquele das partículas clássicas (distinguíveis).


Partículas idênticas e energia de intercâmbio

É possível elucidar estas afirmações com um pouco de detalhe técnico. A "identidade" das partículas está ligada à simetria dos estados mecanico-quânticos devido ao intercâmbio de etiquetas das partículas. Isto dá lugar a dois tipos de partículas, que se comportam de forma diferente, chamadas férmions e bósons. (Há também um terceiro tipo, anyons e sua generalização, pléktons).

Se considerarmos um sistema com duas partículas idênticas, pode-se supor que o vetor de estado de uma partícula é |ψ>, e o vetor de estado da outra partícula é |ψ′>. Pode-se representar o estado do sistema combinado, que é uma combinação não especificada dos estados de uma partícula, como:

.
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

Se as partículas são idênticas, então: (i) seus vetores de estados ocupam espaços de Hilbert matematicamente idênticos; e (ii) |ψψ′> e |ψ′ ψ> terão a mesma probabilidade de colapsar a qualquer outro estado multipartícula |φ>:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

Esta propriedade se chama simetría de intercâmbio. Uma forma de satisfazer essa simetría é que a permutação só induza uma fase:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Sem dúvida, duas permutações conduzirão à identidade (visto que as etiquetas voltarão a suas posições originais), donde se requer que e2iα = 1. Então, ou

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


que se chama um estado totalmente simétrico, ou

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


que se chama estado totalmente antisimétrico.

Férmions, bósons, anyones e pléktons

No tópico precedente, não se demonstrou que os estados totalmente simétricos ou antissimétricos sejam a única forma possível de se satisfazer a simetria de intercâmbio. Sem dúvida, é constatado empiricamente que as partículas encontradas na natureza têm estados quânticos que são totalmente simétricos ou totalmente antissimétricos, com exceções menores que são discutidas mais adiante. Por exemplo, os fótons sempre formam estados totalmente simétricos, e os eléctrons sempre formam estados totalmente antissimétricos.

As partículas que exibem estados totalmente antissimétricos se chamam férmions. A antissimetria total dá lugar ao princípio de exclusão de Pauli, que proíbe que férmions idênticos estejam no mesmo estado quântico; esta é a razão da tabela periódica, e da estabilidade da matéria. O princípio de exclusão de Pauli leva à estatística de Fermi-Dirac, que descreve sistemas de muitos férmions idênticos.

As partículas que exibem estados totalmente simétricos se chaman bósons. Diferentemente dos férmions, os bósons idénticos podem compartilhar estados quânticos. Por causa disso, os sistemas com muitos bósons idênticos se descrevem pela estatística de Bose-Einstein. Isso dá lugar a diversos fenômenos, como o laser, o condensado de Bose-Einstein e a superfluidez.

Há pelo menos uma exceção a esse esquema: em certos sistemas bidimensionais sujeitos a um campo magnético intenso, pode haver uma simetria "mista". Estas partículas exóticas, conhecidas como anyones (Não confundir com ânions!), são regidas pela estatística fracional. Este fenômeno foi observado em gases de elétrons bidimensionais que formam a capa de inversão nos MOSFETs.

Há uma estatística a mais, para os pléktons.

Teorema da estatística do spin relaciona a simetria de intercâmbio de partículas idênticas com o seu spin. Afirma que os bósons têm spin inteiro, e os férmions têm spin semi-inteiro. Os anyones têm spin fracionário.






Na matemática, um espaço de Hilbert é uma generalização do espaço euclidiano que não precisa estar restrita a um número finito de dimensões.

É um espaço vetorial dotado de produto interno, ou seja, com noções de distância e ângulos. Esse espaço obedece uma relação de completude, que garante que os limites existem quando esperados, o que permite e facilita diversas definições da Análise. Os espaços de Hilbert permitem que, de certa maneira, noções intuitivas sejam aplicadas em espaços funcionais. Por exemplo, com eles podemos generalizar os conceitos de séries de Fourier em termos de polinômios ortogonais. Os espaços de Hilbert são de importância crucial para a Mecânica Quântica.

Espaços de Hilbert foram criados por David Hilbert, que os estudou no contexto de equações integrais. John von Neumann criou a nomenclatura "der abstrakte Hilbertsche Raum" em seu famoso trabalho em operadores Hermitianos não limitados, publicado em 1929. Talvez, John Von Neumann seja o matemático que melhor reconheceu a importância desse trabalho original.

Os elementos de espaço de Hilbert abstratos são chamados vetores. Em aplicações, eles são tipicamente sequências de números complexos ou funções. Em Mecânica Quântica, por exemplo, um sistema físico é descrito por um espaço de Hilbert complexo que contém os vetores de estado, que contém todas as informações do sistema e complexidades multifocais.

Definição

Um espaço de Hilbert é um espaço vetorial com produto interno que também é um espaço de Banach com a norma canônica definida pelo produto interno:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS






Conexão com a simetria do estado quântico

O princípio de exclusão de Pauli pode ser deduzido a partir da hipótese de que um sistema de partículas só pode ocupar estados quânticos anti-simétricos. De acordo com o teorema spin-estatística, sistemas de partículas idênticas de spin inteiro ocupam estados simétricos, enquanto sistemas de partículas de spin semi-inteiro ocupam estados anti-simétricos; além disso, apenas valores de spin inteiros ou semi-inteiros são permitidos pelos princípio da mecânica quântica.

Como discutido no artigo sobre partículas idênticas, um estado anti-simétrico no qual uma das partículas está no estado  (nota) enquanto a outra está no estado  é

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

No entanto, se  e  são exatamente o mesmo estado, a expressão acima é identicamente nula:

Isto não representa um estado quântico válido, porque vetores de estado que representem estados quânticos têm obrigatoriamente que ser normalizáveis, isto é devem ter norma finita. Em outras palavras, nunca poderemos encontrar as partículas que formam o sistema ocupando um mesmo estado quântico.



Módulo de Young é uma propriedade mecânica que mede a rigidez de um material sólido. Define a relação entre tensão (força por unidade de área) e deformação (deformação proporcional) em um material no regime de elasticidade linear de uma deformação uniaxial.

O módulo de Young tem o nome do cientista britânico do século XIX Thomas Young. No entanto, o conceito foi desenvolvido em 1727 por Leonhard Euler, e os primeiros experimentos que usaram o conceito de módulo de Young em sua forma atual foram realizados pelo cientista italiano Giordano Riccati em 1782, pré-datando a obra de Young em 25 anos[1]. O termo módulo é derivado do termo de raiz latino modus, que significa módulo!


Definição

Elasticidade linear

[2] Um material sólido sofrerá deformação elástica quando uma pequena carga é aplicada a ele em compressão ou tração. A deformação elástica é reversível (o material retorna à sua forma original após a remoção da carga).

No estresse e tensão quase zero, a curva de tensão-deformação é linear, e a relação entre tensão e deformação é descrita pela lei de Hooke, que afirma que o estresse é proporcional à deformação. O coeficiente de proporcionalidade é o módulo de Young. Quanto mais alto o módulo, mais estresse é necessário para criar a mesma quantidade de deformação; um corpo rígido idealizado teria um módulo de Young infinito.

Não muitos materiais são lineares e elásticos além de uma pequena quantidade de deformação.

Fórmula e unidades

, em que [[3]]

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


 é o módulo de Young

 é o estresse uniaxial, ou força uniaxial por superfície unitária

 é a deformação, ou deformação proporcional (mudança no comprimento dividido pelo comprimento original); é adimensional

Tanto  quanto  têm unidades de pressão, enquanto  é adimensional. Os módulos de Young são tipicamente tão grandes que são expressos não em pascal mas em megapascais (MPa ou N / mm2) ou gigapascais (GPa ou kN / mm2).

Uso

O módulo de Young permite o cálculo da mudança na dimensão de uma barra feita de um material elástico isotrópico sob cargas de tração ou compressão. Por exemplo, prevê o quanto uma amostra de material se estende sob tração ou encurta sob compressão. O módulo de Young se aplica diretamente a casos de estresse uniaxial, isto é, tensão de tração ou compressão em uma direção e nenhum estresse nas outras direções. O módulo de Young também é usado para prever a deflexão que ocorrerá em um feixe estaticamente determinado quando uma carga é aplicada em um ponto entre os suportes do feixe. Outros cálculos elásticos geralmente requerem o uso de uma propriedade elástica adicional, como o módulo de cisalhamento, o módulo de volume ou a razão de Poisson. Quaisquer dois desses parâmetros são suficientes para descrever completamente a elasticidade em um material isotrópico.

Linear versus não linear

O módulo de Young representa o fator de proporcionalidade na lei de Hooke[4], que relaciona o estresse e a tensão. No entanto, a lei de Hooke só é válida sob a hipótese de uma resposta elástica e linear. Qualquer material real acabará por falhar e quebrar quando esticado por uma distância muito grande ou com uma força muito grande; no entanto, todos os materiais sólidos exibem um comportamento quase hookeano para esforços pequenos o suficiente. Se o intervalo ao longo do qual a lei de Hooke é válida é grande o suficiente em comparação com a tensão típica que se espera aplicar ao material, diz-se que o material é linear. Caso contrário (se o estresse típico se aplicasse está fora do intervalo linear), o material é dito não linear.

Aço, fibra de carbono e vidro, entre outros, são geralmente considerados materiais lineares, enquanto outros materiais, como borracha e solos, são não-lineares. No entanto, esta não é uma classificação absoluta: se forem aplicadas tensões ou deformações muito pequenas a um material não linear, a resposta será linear, mas se uma tensão ou tensão muito alta for aplicada a um material linear, a teoria linear não será o suficiente. Por exemplo, como a teoria linear implica reversibilidade, seria absurdo usar a teoria linear para descrever a falha de uma ponte de aço sob alta carga; embora o aço seja um material linear para a maioria das aplicações, não é um caso de falha catastrófica.

Na mecânica sólida, a inclinação da curva tensão-deformação em qualquer ponto é chamada de módulo tangente. Ele pode ser determinado experimentalmente a partir da inclinação de uma curva de tensão-deformação criada durante testes de tração realizados em uma amostra do material.

Materiais direcionais

O módulo de Young nem sempre é o mesmo em todas as orientações de um material. A maioria dos metais e cerâmicas, juntamente com muitos outros materiais, são isotrópicos e suas propriedades mecânicas são as mesmas em todas as orientações. Entretanto, metais e cerâmicas podem ser tratados com certas impurezas, e os metais podem ser mecanicamente trabalhados para tornar suas estruturas de grãos direcionais. Estes materiais então se tornam anisotrópicos e o módulo de Young mudará dependendo da direção do vetor de força. A anisotropia pode ser vista em muitos compostos também. Por exemplo, a fibra de carbono tem um módulo de Young muito mais alto (é muito mais rígido) quando a força é carregada paralelamente às fibras (ao longo do grão). Outros materiais desse tipo incluem madeira e concreto armado. Engenheiros podem usar este fenômeno direcional em sua vantagem na criação de estruturas.


Cálculo

O módulo de Young E, pode ser calculado dividindo-se a tensão de tração, , pela deformação extensional de engenharia, , em a porção elástica (inicial, linear) da curva física tensão-deformação:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Onde

E é o módulo de Young (módulo de elasticidade)

F é a força exercida sobre um objeto sob tensão; A é a área real da seção transversal, que é igual à área da seção transversal perpendicular à força aplicada;

ΔL é a quantidade pela qual o comprimento do objeto muda (ΔL é positivo se o material é esticado e negativo quando o material é comprimido);

 é o comprimento original do objeto.


Força exercida por material esticado ou contraído

O módulo de Young de um material pode ser usado para calcular a força que ele exerce sob tensão específica.

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

onde F é a força exercida pelo material quando contraído ou esticado por .

A lei de Hooke para um fio esticado pode ser derivada desta fórmula:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

Sobre a saturação

 e 

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Mas note que a elasticidade das molas helicoidais vem do módulo de cisalhamento, não do módulo de Young.

Energia potencial elástica

A energia potencial elástica armazenada em um material elástico linear é dada pela integral da lei de Hooke:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

agora explicando as variáveis ​​intensivas:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Isto significa que a densidade de energia potencial elástica (isto é, por unidade de volume) é dada por:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

ou, em uma notação simples, para um material elástico linear: ,


X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

 uma vez que a distensão está definida 

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Em um material elástico não-linear, o módulo de Young é uma função da deformação, de modo que a segunda equivalência não mais se sustenta e a energia elástica não é uma função quadrática da deformação:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS







Em mecânica quântica o teorema da estatística do spin estabelece a relação direta entre o spin de uma partícula com a estatística que a mesma obedece. O spin de uma partícula é o seu momento angular intrínseco (isto é, a contribuição do momento angular que não é devido a movimentação orbital da partícula). Todas as partículas tem spin inteiro ou semi-inteiro (em unidades da constante de Planck ħ).[1][2]

O teorema diz que:

  • função de onda de um sistema de partículas idênticas de spin inteiro tem o mesmo valor quando as posições de qualquer duas partículas são permutadas. Partículas descritas por funções de onda com simetria de permutação são chamadas de bósons.
  • A função de onda de um sistema de partículas idênticas de spin semi-inteiro tem o sinal trocado após uma permutação. Partículas descritas por funções de ondas antisimétricas por permutação são chamadas de férmions.

Em outras palavras o teorema da estatística de spin diz que partículas de spin inteiro são bósons, enquanto partículas de spin semi-inteiro são férmions.

A relação entre o spin e a estatística foi formulada primeiramente por Markus Fierz em 1939 [3] e foi demonstrado de forma mais sistemática por Wolfgang Pauli.[4] Fierz e Pauli discutiram seus resultados enumerando todas as teorias de campos livres sujeitas a exigência de que haja formas quadráticas para observáveis localmente comutantes, incluindo uma densidade de energia positiva e definida. Um argumento mais conceitual foi provido por Julian Schwinger em 1950. Richard Feynman demonstrou este resultado exigindo a unitariedade para espalhamento de um potencial externo variado,[5] que quando traduzido para a linguagem de campos é uma condição no operador quadrático que acopla com o potencial.[6]


Discussão geral

Em um dado sistema, duas partículas indistinguíveis, ocupando dois pontos distintos, tem um único estado e não dois. Isso significa que se quisermos permutar as posições das partículas, nós não ganhamos um novo estado, mas na verdade o mesmo estado físico. De fato, não é possível diferenciar qual partícula está em que posição.

Um estado físico é descrito por uma função de onda, ou – de forma mais geral – por um vetor, que é também chamado "estado"; se ignorarmos as interações com outras partículas, então as duas diferentes funções de onda são fisicamente equivalentes se seu valor absoluto for igual. Então, enquanto o estado físico não muda sob a troca das posições das partículas, a função de onda pode ganhar um sinal de menos.

Bósons são partículas com funções de onda simétricas por troca de posição, portanto se trocamos as partículas a função de onda não muda. Férmions são partículas com funções de onda anti-simétricas sob tal troca, se modo que se trocamos as posições das partículas a função de onda ganha um sinal de menos, o que quer dizer que a probabilidade de dois férmions idênticos ocuparem o mesmo estado tem que ser zero. Este é o princípio de exclusão de Pauli: dois férmions idênticos não podem ocupar o mesmo estado. Esta regra não é válida para bósons.

Em teoria quântica de campos, um estado ou uma função de onda é descrita por operadores de campo operando em um estado básico chamado de vácuo. Para que os operadores projetem as componentes simétricas ou anti-simétricas da função de onda de criação, eles obedecer uma lei de comutação apropriada. O operador

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


(onde  é um operador e  uma função escalar) cria um estado de duas partículas com função de onda  , e dependendo das propriedades de comutação dos campos, ou só a parte simétrica ou só a anti-simétrica contribuem.

Vamos assumir  ambos operadores atuam simultaneamente; de forma mais geral, eles possuem uma separação do tipo espaço, como será explicado mais adiante. Se os campos comutam, quer dizer que o seguinte é verdade:

,
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


então somente a parte simétrica de  contribui, de tal forma que , e o campo irá criar partículas bosônicas.

Por outro lado, se os campos anti-comutam, quer dizer que  possui a seguinte propriedade:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


então teremos apenas contribuições anti-simétricas de , de tal forma que , e as partículas serão fermiônicas. Ingenuamente, nenhuma das propriedades acima tem algo a ver com o spin, que determina as propriedades de rotação das partículas, não as propriedades de troca.



Comentários

Postagens mais visitadas deste blog